Hemolytic Anemias

Abdul Hafeez Siddiqui, MD
Assistant Professor of Pediatrics
Division of Hematology & Oncology
University of South Alabama
Disclosure Information

Abdul H. Siddiqui, MD

No speaker bureaus or ongoing consultative relationships

No discussion of unlabeled uses
Synthesis of Hemoglobin
Hematopoiesis

It all starts here
Red Blood Cells
RBC

- Biconcave disc; diameter: 7.5 um
- Shape allows deformability as the erythrocytes move through capillaries
- Normal life span 100 – 120 days
RBC Structure

Cell membrane
- Lipid bilayer
- Transmembrane proteins anchored to cytoskeleton
- Band 3, glycophorins

Cytoskeleton
- Spectrin, ankyrin, actin

Hemoglobin

Others
- Enzymes, electrolytes
RBC Metabolism

- No nucleus, mitochondria, ribosome
 - So, depends on anaerobic metabolism

- Requires continuous supply of O_2 for energy

- Energy needs & enzyme activities ↓ with age of RBC

- Energy supplied by glycolysis & used to:
 - Maintain membrane shape & cationic balance
 - Prevent oxidative damage (by providing reduced glutathione)
 - Provide 2,3-DPG
 - Maintain Hb in functional form
Anaerobic Glycolysis in RBC

Hexokinase
Glucosephosphate isomerase

Hexose to pentose Monophosphate Shunt produces NADPH & reduced Glutathione

Met Hb Reduction

Pyruvate Kinase
Lactate Dehydrogenase

Pyruvate

Net result 2 mols of ATP/Glucose

Glucose

G6P

F6P

F1,6DP

G3P

1,3DPG

3DPG

2DPG

PEP

Pyruvate

Lactate
Hemoglobin Molecule

- α chain
- β chain
- iron
- heme group

red blood cell
helical shape of the polypeptide molecule
Genetics of Hemoglobin
Globin Polypeptide Chains

- α – alpha
- β – beta
- γ – gamma
- δ – delta

Heme
Note: There are 2 beta globin genes and 4 alpha globin genes.
Synthesis of Hemoglobin

Beta Globin Genes

Hemoglobin Protein

Alpha Globin Genes

Chromosome 11

Chromosome 16
<table>
<thead>
<tr>
<th>Types of Hb</th>
<th>Globin Chains Synthesized</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb F</td>
<td>α2, γ2</td>
<td>(Fetal) 1%</td>
</tr>
<tr>
<td>Hb A</td>
<td>α2, β2</td>
<td>(Adult) >95%</td>
</tr>
<tr>
<td>Hb A2</td>
<td>α2, δ2</td>
<td>(Adult) ≤3.5%</td>
</tr>
</tbody>
</table>
Hemoglobin

- The red substance in the Red Blood Cells
- Carries Oxygen from lungs to rest of the body
- Brings back CO$_2$ in exchange
Hemoglobin-Oxygen Dissociation Curve

\[P_{50} = \]

Partial Pressure of Oxygen Required to Saturate 50% of Hemoglobin

HbF:

Binds less to 23DPG so ↑ affinity to O\textsubscript{2}.
Left shifted curve.
Favors O\textsubscript{2} shift
Mother → Fetus
Definition of Anemia

Hemoglobin level too low to meet cellular Oxygen demand

Hemoglobin level at least 2 SD below mean value for age, gender and race (& altitude & tanner stage)
From: Dallman, J.Pediatr. 94: 26, 1979
Physiologic Anemia of Infancy

<table>
<thead>
<tr>
<th></th>
<th>Age (wk)</th>
<th>Hb Nadir Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>12</td>
<td>9.5 gm/dl</td>
</tr>
<tr>
<td>Premature</td>
<td>6 – 8</td>
<td>7 gm/dl</td>
</tr>
</tbody>
</table>

From: Dallman, J.Pediatr. 94: 26, 1979
Physiologic Anemia

- Short RBC lifespan

- ↓ erythropoiesis
 - ↑ oxygen availability
 - ↑ 2,3 DPG; ↓ HbF levels → ↓ O_2 affinity
 - ↑ cardiac output, ↑ O_2 extraction

- Nutritional:
 - ↓ iron, folate, Vit E

Classification of Anemias

Pathology
- ↓ Production
- Bleeding
- Hemolysis

RBC size
- Microcytic
- Normocytic
- Macrocytic
Classification of Anemias
Pathologic

↓ Production
- Marrow infiltration / injury
- Nutritional deficiency
- Erythropoietin def
- Ineffective erythropoiesis

Acute Bleeding

Hemolysis
- Acquired (Extrinsic to RBC)
- Inherited (Intrinsic)
Classification of Anemias
↓ ed Production

Marrow infiltration / injury
- Malignancies
- Infections
- Drugs / chemicals
- BM failure syndromes (*Aplastic, DBA..*)

Erythropoietin def
- Renal failure

Ineffective erythropoiesis
- Hemoglobinopathies (*sickle cell, thalassemia..*)
Hemolytic Anemia

↑ Destruction of erythrocytes

Bone Marrow Compensatory Response

↑ Production of erythrocytes
Classification of Hemolysis

<table>
<thead>
<tr>
<th></th>
<th>Intravascular</th>
<th>Extravascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of</td>
<td>Bld vessels</td>
<td>Spleen &/or Liver (RES)</td>
</tr>
<tr>
<td>RBC Clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibody Type</td>
<td>IgM (Occ IgG)</td>
<td>IgG, Non-autoimmune</td>
</tr>
<tr>
<td>Mechanism of</td>
<td>Complement or shear mediated</td>
<td>Macrophage</td>
</tr>
<tr>
<td>Hemolysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Findings</td>
<td>Hemoglobinuria</td>
<td>↑ Bilirubin</td>
</tr>
<tr>
<td></td>
<td>↓ Haptoglobin</td>
<td>↑ LDH</td>
</tr>
<tr>
<td>Examples</td>
<td>PCH*, PNH</td>
<td>AIHA*, HDN*, HS</td>
</tr>
</tbody>
</table>
Etiology

Intrinsic factors
- Membrane disorders
- Enzyme deficiencies
- Hemoglobin Disorders

Extrinsic factors:
- Antibodies
- Toxins
- Mechanical destruction
- Hypersplenism, DIC, other MAHAs
Clinical Presentation

- Pallor (suspect aplastic crisis)
- Icterus, jaundice
- Fatigue
- Splenomegaly
- Gallstones
- Dark urine
Intrinsic Defects

Red Cell Membrane Defect
Hereditary Spherocytosis

- Most common cause of non-immune hemolytic anemia
- Autosomal dominant 75%
 Sporadic mutations 25%
- Abnormalities of spectrin (and/or ankyrin, protein4.2, Band 3)
- Loss of membrane surface area relative to intracellular volume → Spherocytes, ↓ deformability
Clinical Manifestations of HS

- Hemolytic anemia
- Pallor, fatigue
- Jaundice (neonatal jaundice on Day 1)
- Splenomegaly
- Gallstones
- Positive family history (75%)
- Risk for Parvovirus associated aplasia
Lab Findings

- Spherocytes on peripheral smear
- ↑ Reticulocyte, Bilirubin, LDH
- ↑ Osmotic fragility
- Negative DAT
- ↑ MCHC due to relative cellular dehydration
Peripheral smear: HS
Osmotic Fragility
Graphical illustration of Ektacytometer

Yao et al, Journal of Biomechanics 2001; 34, 1501
Hereditary Elliptocytosis

- Cigar shaped RBCs (>25%)
- Autosomal dominant
- Southeast Asian Ovalocytosis (SAO) is a variant, hyperstable cells, confers malaria protection
HE: Peripheral Blood Smear
Hereditary Pyropoikilocytosis

- Rare cause of severe hemolytic anemia
- Bizarre shaped cells in smear
- Family history of HE
Ehh, What's Up, Doc?
RBC Enzyme Disorders
G6PD Deficiency

- Most common enzyme deficiency
- X linked inheritance
- Anemia: low grade, chronic or acute
- Africans have a milder variant (A)
- More severe in Mediterranean population
G6PD Deficiency

- Oxidative stress → Hemolysis
 - Infection
 - Drugs
 - Fava beans (favism)
 - Naphthelene (moth balls)

- Denatured Hb = Heinz bodies
 (Need special staining)

- Reticulocytes have higher G6PD levels, so assay after resolution of hemolytic crisis
G6PD Deficiency: Blood Smear
Pyruvate Kinase Deficiency

↓ ATP production
→ Loss of membrane stability
→ Water loss
→ Cell shrinkage
→ Hemolysis
Other Rare Enzymopathies

- Triose Phosphate Isomerase Deficiency
- Phosphoglycerate Kinase Deficiency
- Pyrimidine 5′-Nucleotidase Deficiency
 - basopholic stippling, associated with lead
- Aldolase A deficiency
Hemoglobin Disorders
Methemoglobinemia

- Normal heme group is in Fe$^{2+}$ (ferrous) state which combines with oxygen to form oxyhemoglobin

- When Hgb is oxidized it becomes Fe$^{3+}$ (Ferric) heme or Methemoglobin

- Methemoglobin **DOES NOT** bind to oxygen → poor tissue oxygen delivery

- Oxygen dissociation curve: Left shifted
Methemoglobinemia

- Congenital

- Acquired
 - Drugs: Lidocaine, Pyridium
 - Aniline dyes
 - Nitrates, nitrites (well water)
 - G6PD deficiency in oxidative stress
Methemoglobinemia

- Chocolate color blood
- Normal PO$_2$, but ↓ O$_2$ sats on Oxymetry
- MetHb levels >40-50%
 → cardiopulmonary, neurologic symptoms
- Rx: Remove cause
 Methylened blue (Contraindicated in G6PD)
Extrinsic Causes of Hemolytic Anemia
Neonatal Alloimmune Hemolytic Anemia (Erythroblastosis Fetalis)

Rh or ABO incompatibility (or other blood groups)
+ Feto-maternal hemorrhage (spontaneous, amniocentesis, abortion, trauma, external cephalic version)

→ Maternal immune response (IgG)
→ Transplacental passage of maternal alloantibody directed against fetal antigens
→ Hemolysis of fetal RBCs
→ Anemia, hyperbilirubinemia
→ Risk of hydrops fetalis, kernicterus
Extrinsic Causes of Hemolytic Anemia

- **Immune mediated**
- **Mechanical destruction**
 - Microangiopathic Hemolytic Anemia (MAHA)
 - DIC, TTP, HUS
 - Drugs: Methyldopa
 - Thermal burns
 - Toxins
 - Hypersplenism
- **Complement mediated**
 - Paroxysmal Nocturnal Hemoglobinuria
Rh Hemolytic Disease

- Rh: The most immunogenic blood groups
- Hemolysis does not occur with 1st pregnancy (Alloimmunization does occur)
- Infant’s Direct Antiglobulin Test (DAT): +
- RhIgG is given to Rh-ve mothers to prevent alloimmunization @ 28wks GA and after any invasive procedure
Direct (Coomb’s) Antiglobulin Test
Indirect Antiglobulin test
Warm Reactive Autoimmune Hemolytic Anemia (AIHA)

- IgG mediated
- Extravascular clearance via reticuloendothelial system (Spleen)
- Primary / Idiopathic
- Secondary
 - SLE, lymphoid malignancies, immunodeficiency, Evans Syndrome*
- DAT positive
- Treatment:
 - Transfusion with least incompatible blood
 - Steroids, splenectomy, IVIG, immunosuppressives
Blood Smear: AIHA
Cold Agglutinin Disease

- IgM mediated
 - IgM-RBC immune complex forms @ 4°C
 - Activates complement when warmed
- Associated with Mycoplasma, EBV
- DAT + for C3
- Intravascular hemolysis
- Treatment:
 Keep patient warm, supportive
Microangiopathic Hemolytic Anemia (MAHA)

- Vasculitic disorders
- Burns
- DIC
- TTP
- Pregnancy
- Drug: Cyclosporine, tacrolimus, cocaine
- Congenital heart disease
Blood Smear: MAHA
Mechanical fragmentation of RBCs
(Schistocytes, Spherocytes)
Thrombotic Thrombocytopenia Purpura (TTP)

Classical Pentad of:
- Fever
- MAHA
- Thrombocytopenia
- Renal dysfunction
- Neurological changes

May be congenital or autoimmune process

Treatment:
Plasmapheresis or FFP infusion with steroids, other immunosuppressants
DONOT give platelets (its like adding fuel to fire)
Paroxysmal Nocturnal Hemoglobinuria

- Hemoglobinuria due to intravascular hemolysis
- Thrombosis (intraabdominal, cerebral veins)
- Pancytopenia
- ↑ risk of Leukemia
- Lab Testing:

 Flowcytometry: Absence of PI-linked proteins CD55 & CD59 on leukocytes → complement mediated hemolysis
Wilson's Disease

- Wilson's Disease must be considered in a patient with unexplained liver disease and new hemolysis.
- Copper and ceruloplasmin levels should be obtained immediately before irreversible hepatic disease.

Clostridium Sepsis
That's all Folks!
Thank you

Questions..

See you next time...until then.
Keep reading
(thalassemia, sickle cell..)